Copied to
clipboard

G = C3xC23.21D6order 288 = 25·32

Direct product of C3 and C23.21D6

direct product, metabelian, supersoluble, monomial

Aliases: C3xC23.21D6, C62.62D4, C62.177C23, D6:C4:6C6, C6.6(C6xD4), C4:Dic3:5C6, C2.8(C6xD12), C6.94(C2xD12), (C2xC6).46D12, (C2xC12).232D6, C23.26(S3xC6), C22.4(C3xD12), (C22xDic3):5C6, (C22xC6).107D6, (C6xC12).191C22, (C2xC62).53C22, C6.115(D4:2S3), (C6xDic3).123C22, C32:16(C22.D4), (C2xC4).7(S3xC6), (Dic3xC2xC6):6C2, (C2xC6).5(C3xD4), (C3xD6:C4):18C2, C22:C4:6(C3xS3), (C3xC22:C4):4C6, (C2xC12).3(C2xC6), C6.23(C3xC4oD4), (C2xC3:D4).5C6, C22.45(S3xC2xC6), (C3xC22:C4):14S3, (C3xC4:Dic3):29C2, (C3xC6).176(C2xD4), (C6xC3:D4).12C2, (S3xC2xC6).56C22, C2.10(C3xD4:2S3), (C22xS3).6(C2xC6), (C2xC6).32(C22xC6), (C22xC6).27(C2xC6), C3:2(C3xC22.D4), (C3xC6).129(C4oD4), (C32xC22:C4):13C2, (C2xC6).310(C22xS3), (C2xDic3).23(C2xC6), SmallGroup(288,657)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C3xC23.21D6
C1C3C6C2xC6C62S3xC2xC6C6xC3:D4 — C3xC23.21D6
C3C2xC6 — C3xC23.21D6
C1C2xC6C3xC22:C4

Generators and relations for C3xC23.21D6
 G = < a,b,c,d,e | a3=b2=c2=d12=1, e2=c, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=cd-1 >

Subgroups: 418 in 173 conjugacy classes, 66 normal (30 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, D4, C23, C23, C32, Dic3, C12, D6, C2xC6, C2xC6, C2xC6, C22:C4, C22:C4, C4:C4, C22xC4, C2xD4, C3xS3, C3xC6, C3xC6, C3xC6, C2xDic3, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C22xS3, C22xC6, C22xC6, C22.D4, C3xDic3, C3xC12, S3xC6, C62, C62, C62, C4:Dic3, D6:C4, C3xC22:C4, C3xC22:C4, C3xC4:C4, C22xDic3, C2xC3:D4, C22xC12, C6xD4, C6xDic3, C6xDic3, C6xDic3, C3xC3:D4, C6xC12, S3xC2xC6, C2xC62, C23.21D6, C3xC22.D4, C3xC4:Dic3, C3xD6:C4, C32xC22:C4, Dic3xC2xC6, C6xC3:D4, C3xC23.21D6
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2xC6, C2xD4, C4oD4, C3xS3, D12, C3xD4, C22xS3, C22xC6, C22.D4, S3xC6, C2xD12, D4:2S3, C6xD4, C3xC4oD4, C3xD12, S3xC2xC6, C23.21D6, C3xC22.D4, C6xD12, C3xD4:2S3, C3xC23.21D6

Smallest permutation representation of C3xC23.21D6
On 48 points
Generators in S48
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(2 24)(4 14)(6 16)(8 18)(10 20)(12 22)(26 43)(28 45)(30 47)(32 37)(34 39)(36 41)
(1 23)(2 24)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(11 21)(12 22)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 37)(33 38)(34 39)(35 40)(36 41)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 31 23 48)(2 47 24 30)(3 29 13 46)(4 45 14 28)(5 27 15 44)(6 43 16 26)(7 25 17 42)(8 41 18 36)(9 35 19 40)(10 39 20 34)(11 33 21 38)(12 37 22 32)

G:=sub<Sym(48)| (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (2,24)(4,14)(6,16)(8,18)(10,20)(12,22)(26,43)(28,45)(30,47)(32,37)(34,39)(36,41), (1,23)(2,24)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,37)(33,38)(34,39)(35,40)(36,41), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,31,23,48)(2,47,24,30)(3,29,13,46)(4,45,14,28)(5,27,15,44)(6,43,16,26)(7,25,17,42)(8,41,18,36)(9,35,19,40)(10,39,20,34)(11,33,21,38)(12,37,22,32)>;

G:=Group( (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (2,24)(4,14)(6,16)(8,18)(10,20)(12,22)(26,43)(28,45)(30,47)(32,37)(34,39)(36,41), (1,23)(2,24)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,37)(33,38)(34,39)(35,40)(36,41), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,31,23,48)(2,47,24,30)(3,29,13,46)(4,45,14,28)(5,27,15,44)(6,43,16,26)(7,25,17,42)(8,41,18,36)(9,35,19,40)(10,39,20,34)(11,33,21,38)(12,37,22,32) );

G=PermutationGroup([[(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(2,24),(4,14),(6,16),(8,18),(10,20),(12,22),(26,43),(28,45),(30,47),(32,37),(34,39),(36,41)], [(1,23),(2,24),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(11,21),(12,22),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,37),(33,38),(34,39),(35,40),(36,41)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,31,23,48),(2,47,24,30),(3,29,13,46),(4,45,14,28),(5,27,15,44),(6,43,16,26),(7,25,17,42),(8,41,18,36),(9,35,19,40),(10,39,20,34),(11,33,21,38),(12,37,22,32)]])

72 conjugacy classes

class 1 2A2B2C2D2E2F3A3B3C3D3E4A4B4C4D4E4F4G6A···6F6G···6S6T···6Y6Z6AA12A···12P12Q···12X12Y12Z
order12222223333344444446···66···66···66612···1212···121212
size1111221211222446666121···12···24···412124···46···61212

72 irreducible representations

dim11111111111122222222222244
type+++++++++++-
imageC1C2C2C2C2C2C3C6C6C6C6C6S3D4D6D6C4oD4C3xS3D12C3xD4S3xC6S3xC6C3xC4oD4C3xD12D4:2S3C3xD4:2S3
kernelC3xC23.21D6C3xC4:Dic3C3xD6:C4C32xC22:C4Dic3xC2xC6C6xC3:D4C23.21D6C4:Dic3D6:C4C3xC22:C4C22xDic3C2xC3:D4C3xC22:C4C62C2xC12C22xC6C3xC6C22:C4C2xC6C2xC6C2xC4C23C6C22C6C2
# reps12211124422212214244428824

Matrix representation of C3xC23.21D6 in GL4(F13) generated by

1000
0100
0030
0003
,
11100
01200
0010
0001
,
12000
01200
0010
0001
,
8000
8500
0060
00011
,
5000
0500
00011
0060
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,3,0,0,0,0,3],[1,0,0,0,11,12,0,0,0,0,1,0,0,0,0,1],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[8,8,0,0,0,5,0,0,0,0,6,0,0,0,0,11],[5,0,0,0,0,5,0,0,0,0,0,6,0,0,11,0] >;

C3xC23.21D6 in GAP, Magma, Sage, TeX

C_3\times C_2^3._{21}D_6
% in TeX

G:=Group("C3xC2^3.21D6");
// GroupNames label

G:=SmallGroup(288,657);
// by ID

G=gap.SmallGroup(288,657);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,701,590,555,394,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^12=1,e^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<